
Applying Mamba to GNNs

CS660: Machine Learning

Jyotirmaya Shivottam

23226001

School of Computer Sciences

March 13, 2024

Recap
Goals

To investigate whether Structured Space Models (SSMs), specifically Mamba S6 , can be
applied to state updates in Graph Neural Networks (GNNs)
To implement such a graph-based model
To benchmark against existing graph networks on a wide variety of tasks

Existing GNN Baselines
2015: Gated Graph Sequence Neural Networks (GGSNN)

2016: Graph Convolutional Networks (GCN)

2017: Graph Attention Networks (GATN)

2018: Graph Isomorphism Networks (GIN)

2021: (Dynamic) Graph Echo State Networks (GESN)

#1

March 13, 2024 | CS660 Project | Shivottam, J. 1/13

https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/2110.08565

Primer: Graph Neural Networks (GNNs)
General GNNs (Message Passing) update the state (or embedding) of each node in a
graph, , based on the states of its neighbors.
They can be characterized by the following equations:

Note that the and functions need to be at least permutation-
equivariant.

Tasks
Node property prediction, e.g., node classification.
Edge property prediction, e.g., link existence.
Graph representation learning (Global graph-level)

March 13, 2024 | CS660 Project | Shivottam, J. 2/13

Primer: Graph Neural Networks (GNNs)

Source: Scarselli, F.; The Graph Neural Network Model

March 13, 2024 | CS660 Project | Shivottam, J. 3/13

https://ieeexplore.ieee.org/document/4700287

Mamba / S6 (Dec, 2023)
A state space model (SSM) maps an input signal, , to an output signal, ,
through a set of hidden state variables, , like so:

Here, , , , and are the state transition, input, output, and feed-through
matrices, respectively. Note: are time-independent.
Goal: To find (or learn) a mapping (model) from a long sequence of input data to a
sequence of output data.
Selective Structured State Space (Sequence) Model with Associative Scan SSSSSS (S6)
Mamba .
Mamba relaxes the time-invariance criterion of S4 (an earlier SSM), thereby
introducing input-dependence.

March 13, 2024 | CS660 Project | Shivottam, J. 4/13

Mamba / S6

Source: Mamba (S6), Gu et al [1] & https://github.com/hkproj/mamba-notes

March 13, 2024 | CS660 Project | Shivottam, J. 5/13

https://github.com/hkproj/mamba-notes

Mamba / S6

Source: Mamba (S6), Gu et al [1]

March 13, 2024 | CS660 Project | Shivottam, J. 6/13

Our approach
We propose to treat the (hidden) state update of each node as a sequence, and apply
Mamba to model the sequence.
Then, we aggregate on the neighbor states, and update each node state using learned
aggregation (attention) weights, or a fixed aggregation function, e.g., mean, max, sum,
etc.

The function can be learned or fixed. The is learned in the
usual Mamba way.
This is similar to (in fact, a linearized version of) Gated Graph Sequence Neural
Networks (GGSNN).

March 13, 2024 | CS660 Project | Shivottam, J. 7/13

Results so far
Datasets: Planetoid datasets: Cora, Pubmed, and CiteSeer. These datasets comprise
citation networks in various domains.
Task: Node classification.
The Mamba block was taken from the mamba-ssm Python library by the original
authors. The rest of the model was implemented from scratch in PyTorch. We used
skip connections and activations.
We used dropout, a decaying learning rate () with schedule, RAdam
optimizer, and maintained similar structure for all the models. The parameter
budget was unconstrained.
We ran each model with 3 - 5 different seeds and computed the mean and standard
deviation of the test accuracy. In total, 1_439 // 4(?) runs were conducted and
tracked on WandB. No hyperparameter tuning was done.
We found that our model performs comparably to the baselines (+ GATv2 + MLP).
However, there was an interesting observation.

March 13, 2024 | CS660 Project | Shivottam, J. 8/13

https://github.com/state-spaces/mamba

Model architecture
Linear

Source: Mamba (S6), Gu et al [1]

Linear

March 13, 2024 | CS660 Project | Shivottam, J. 9/13

Results so far: General Comparison

March 13, 2024 | CS660 Project | Shivottam, J. 10/13

Results so far: Experiments

March 13, 2024 | CS660 Project | Shivottam, J. 11/13

Current limitations
Unstable training: Without normalization & skip connections, the training is
stochastic.
Fixed aggr > Learned aggr: We found that using a fixed aggregation function (e.g.,
mean, max, sum) works better. This might be due to oversmoothing.
Shallow models: Increasing the number of layers beyond 4 tanks performance. cf.
Graph Transformer Networks.
Ablation: If we remove the Mamba blocks, we nearly recover the GIN update, with
nearly identical performance.

Why? Some probable reasons:
Since Mamba is a seq2seq model, it does not seem very useful for static graphs.
In particular, as we are treating each node as having its own sequence of states,
the sequence length becomes just 1, making it a bottleneck.

March 13, 2024 | CS660 Project | Shivottam, J. 12/13

Remaining Work
We are currently experimenting with other larger datasets, that are known to have
long-range dependencies between nodes.
We will also try mixing and to further stabilize training and
to test if it enables deeper models.
We are yet to test with dynamic graphs, i.e., graphs that change over time
(changing node / edge embeddings or new nodes / edges, etc.), e.g., multi-sensor
data, spatio-temporal graphs, etc. We expect that in this case, Mamba should have
an impact, as the bottleneck is lifted.

References
0. Other GNN approaches listed before.
1. 2023: Mamba: Linear-Time Sequence Modeling with Selective State Spaces
2. 2020: HiPPO: Recurrent Memory with Optimal Polynomial Projections

March 13, 2024 | CS660 Project | Shivottam, J. 13/13

https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2008.07669

